13 research outputs found

    Sieve Plate Pores in the Phloem and the Unknowns of Their Formation

    Get PDF
    Sieve pores of the sieve plates connect neighboring sieve elements to form the conducting sieve tubes of the phloem. Sieve pores are critical for phloem function. From the 1950s onwards, when electron microscopes became increasingly available, the study of their formation had been a pillar of phloem research. More recent work on sieve elements instead has largely focused on sieve tube hydraulics, phylogeny, and eco-physiology. Additionally, advanced molecular and genetic tools available for the model species Arabidopsis thaliana helped decipher several key regulatory mechanisms of early phloem development. Yet, the downstream differentiation processes which form the conductive sieve tube are still largely unknown, and our understanding of sieve pore formation has only moderately progressed. Here, we summarize our current knowledge on sieve pore formation and present relevant recent advances in related fields such as sieve element evolution, physiology, and plasmodesmata formation.Peer reviewe

    A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects

    Get PDF
    We thank the Genomic Technologies Facility (GTF) and the Central Imaging Facility (CIF) of the University of Lausanne for expert technical support. We thank Valérie Dénervaud Tendon, Guillaume Germion, Deborah Mühlemann, and Kayo Konishi for technical assistance and John Danku and Véronique Vacchina for ICP-MS analysis. This work was funded by grants from the Swiss National Science Foundation (SNSF), the European Research Council (ERC) to NG and a Human Frontiers Science Program (HFSP) grant to JT and NG. GL and CM were supported by the Agropolis foundation (Rhizopolis) and the Agence Nationale de la Recherche (HydroRoot; ANR-11-BSV6-018). MB was supported by a EMBO long-term postdoctoral fellowship, JEMV by a Marie Curie IEF fellowship and TK by the Japan Society for the Promotion of Sciences (JSPS).Peer reviewedPublisher PD

    Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers

    Get PDF
    The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1–3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cellwalls between endodermal cells and fill the gap between them [4–6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8].However, the current knowledge on the formation of these two distinct endodermal barriers and their regulatory role in nutrient transport is still limited. Here, we identify an uncharacterized gene,LOTR1, essential for Casparian strip formation in Arabidopsis thaliana. The lotr1 mutants display altered localization of CASP1, an essential protein for Casparian strip formation [9], disrupted Casparian strips, ectopic suberization of endodermal cells, and low accumulation of shoot calcium (Ca). Degradation by expression of a suberin-degrading enzyme in the mutants revealed that the ectopic suberization at the endodermal cells limits Ca transport through the transmembrane pathway, thereby causing reduced Ca delivery to the shoot. Moreover, analysis of the mutants showed that suberin lamellae function as an apoplastic diffusion barrier to the stele at sites of lateral root emergence where Casparian strips are disrupted. Our findings suggest that the transmembrane pathway through unsuberized endodermal cells, rather than the sites of lateral root emergence,mediates the transport of apoplastic substances such as Ca into the xylem

    The MYB36 transcription factor orchestrates Casparian strip formation

    Get PDF
    The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs recruit Peroxidase 64 (PER64), a Respiratory Burst Oxidase Homolog F, and Enhanced Suberin 1 (ESB1), a dirigent-like protein, to assemble the lignin polymerization machinery. However, the factors that control both expression of the genes encoding this biosynthetic machinery and its localization to the Casparian strip formation site remain unknown. Here, we identify the transcription factor, MYB36, essential for Casparian strip formation. MYB36 directly and positively regulates the expression of the Casparian strip genes CASP1, PER64, and ESB1. Casparian strips are absent in plants lacking a functional MYB36 and are replaced by ectopic lignin-like material in the corners of endodermal cells. The barrier function of Casparian strips in these plants is also disrupted. Significantly, ectopic expression of MYB36 in the cortex is sufficient to reprogram these cells to start expressing CASP1–GFP, correctly localize the CASP1–GFP protein to form a Casparian strip domain, and deposit a Casparian strip-like structure in the cell wall at this location. These results demonstrate that MYB36 is controlling expression of the machinery required to locally polymerize lignin in a fine band in the cell wall for the formation of the Casparian strip

    A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells

    Get PDF
    The phloem pole atlas has over 10,000 cells, with an unprecedented resolution of the transcriptional dynamics in phloem development. Despite distinct mature transcriptional states, co-expression networks show common states in protophloem-adjacent cells. Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.Peer reviewe

    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.Bourdon et al. demonstrate the possibility to ectopically synthesize callose, a polymer restricted to primary cell walls, into Arabidopsis and aspen secondary cell walls to manipulate their ultrastructure and ultimately reduce their recalcitrance

    CASP microdomain formation requires cross cell wall stabilization of domains and non-cell autonomous action of LOTR1.

    Get PDF
    Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 leads to fully functional CSDs at ectopic positions, forming 'half strips'. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning

    Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis

    No full text
    In plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE LIKE 12 (PLL12) as critical for plant growth and development. Using genetic complementations, we established that PLL12 is required exclusively late during sieve element differentiation. Structural homology modeling, enzyme inactivation, and overexpression suggest a vital role for PLL12 in sieve element specific pectin remodeling. While short distance symplastic diffusion is unaffected, the pll12 mutant is unable to accommodate sustained plant development due to an incapacity to accommodate increasing hydraulic demands on phloem long distance transport as the plant grows – a defect that is aggravated when combined with another sieve element specific mutant callose synthase 7 (cals7). Establishing CALS7 as a specific sieve pore marker, we investigated the subcellular dynamics of callose deposition in the developing sieve plate. Using fluorescent CALS7 then allowed identifying structural defects in pll12 sieve pores that are moderate at the cellular level but become physiologically relevant due to the serial arrangement of sieve elements in the sieve tube. Overall, pectin degradation through PLL12 appears subtle in quantitative terms. We therefore speculate that PLL12 may act as a regulator to locally remove homogalacturonan thus potentially enabling further extracellular enzymes to access and modify the cell wall during sieve pore maturation.Peer reviewe
    corecore